

Module	Courses	Course description		
Introduction to nanotechnology,	Introduction in nanotechnology,	1. Physics on the nanoscale.		
nanomaterials, and nanomedicine	nanoelectronics and nanomedicine	2. Nanotechnologies as tools for nanofabrication.		
The module will focus on device physics	(Acad. I. Tiginyanu)	3. Typical nanostructures and their networks.		
and operation principle at the nanoscale,	6 hrs	4. Functionalities of various nanostructures for use in		
as well as principles of nanostructure		nanoelectronics and nanomedicine.		
production and characterization.	Introduction to nanotechnology and	1. Nanomaterials: Synthesis and characterization.		
30 hours	nanomaterials	2. Nanomaterials with various morphologies.		
	(Dr. E. Monaico)			
	8 hrs			
	Introduction to Biomedical Engineering	1. Medical technologies		
	(prof. V.Sontea)	2. Medical devices		
	6 hrs	3. Management of medical technologies		
	Online courses from the University of Bristol	1. How materials assemble. Healthcare product based on		
	10 hrs	dynamic self-assembly at the molecular level.		
		2. Optical trapping.		
		3. Chemical Vapour Deposition.		
		4. Focused Ion Beams.		
		5. Advanced forms of carbon.		
Micro- and Nano- electromechanical	Electrochemistry for nanofabrication	1. Electrochemistry: electrolytes, electrochemical cells and		
systems, microfluidic lab-on-a-chip	(Dr. E. Monaico)	potentiostats.		
and their integration in product	6 hrs	2. Dielectric and semiconductor nanotemplates, type of pores.		
design		3. Material nanostructuring by design, in-plane approach.		
The module will provide insights on the		4. Pulsed electrochemical deposition for low dimensional		
principles of operation, physical structure,		materials fabrication.		
methods of fabrication and properties of a	Micro- and Nano- electrochemical systems	1. Inter-relations between nano-opto-electronics and micro-		
range of micro and nano	(Prof. V. Ursachi)	nano-electromechanics. Basic notions and physical concepts.		
electromechanical, microfluidic, and lab-	16 hrs	2. Technological tools for Microelectromechanical (MEMS) and		
on-a-chip systems with focus on their		Nanoelectromechanical (NEMS) system fabrication.		
biomedical applications.		3. Microscopic and other tools for characterization of nano-opto-		
30 hours		electronic and nanoelectromechanical materials and systems.		
		4. Applications areas of MEMS and NEMS.		
		5. MEMS based on silicon.		
		6. Applications based on GaN, diamond and related materials.		
		7. Biomedical MEMS applications.		

Advanced Training Course

Module	Courses	Course description		
	Microfluidics and micromotors	1. Principles of Microfluidics.		
	(Dr. M. Enachi)	2. Microfluidics in biomedical research		
	8 hrs	3. Introduction onto Lab-on-a Chip technology.		
		4. Micro-propulsion and self-propelled micro-engines.		
		5. Micromotors and hybrid micromotors: the new generation of		
		drug carriers.		
		 Micropumps and microvalves for precise control and manipulation of small fluid volumes. 		
		7. Microsystems for single-cell analysis.		
Anatomy and physiology The module will focus on the structure	Anatomy and physiology (Prof. V. Vovc)	1. General notions about structure and function of human organism. Homeostasis.		
and function of the major systems of	24 hrs	2. Neurons, synapses, nervous centers and nervous system.		
human body, physiology of tumorigenesis		3. Endocrine systems and its role in organism.		
and vasculature.		4. Functional anatomy of the cardiovascular system.		
24 hours		Hemodynamics.		
		 Structure and function of digestive, respiratory and excretory systems. 		
		6. Physiology of blood, lymph and immune systems.		
		7. Cancer biology fundamentals and pathophysiology of		
Diamataviala kiesevenetikility	Diamataviala Diasampatihility and	tumorigenesis. 1. Regenerative Medicine - concept, content, tasks.		
Biomaterials biocompatibility	Biomaterials, Biocompatibility and Bioengineering	1. Regenerative Medicine - concept, content, tasks. Regenerative medicine domains. Legal and ethical aspects.		
The module will give a general overview	(Prof. V. Nacu)	National and International laws. Bioengineering, concepts,		
on biocompatibility and biomaterials synthesis, characterisation, mechanical	40 hrs	methodologies and ethical challenges, nanomedicine with		
testing, surface modification. The clinical	401113	focus on materials, systems, chips, devices, robots.		
relevance of biocompatible materials will		2. The stem cell types and cells characteristics. The methods for		
be discussed.		obtaining, preservation and storage of stem cells. Practical		
40 hours		skills for cells handling and analysis by specific		
+0 110013		instrumentation.		
		3. Cellular therapy, types, effectiveness. Perspectives of the		
		cellular therapy. Standard protocols for tissue engineered		
		components, including blood vessels, bone, cartilage,		
		pancreas, liver, skin, etc.		
		4. Gene therapy, types, purposes. Benefits and potential risks of		

Advanced Training Course

Module	Courses	Course description
Nanotechnologies and nanomaterials at the nano-biointerface This module will be focussed on practical applications of nanomaterials in medical field such as: detection and diagnostics, drug delivery systems and therapeutic approaches. Advances of nanotechnology in regenerative medicine and cancer detection and therapy will be discussed. 40 hours	Advances in Nano-Oncology using Genetcis (Prof. G. Curocichin) 10 hrs Nanotechnology and Nanomaterials for tissue engineering and drug delivery	 genetic therapy. Tissue engineering, components of tissue engineering. Tissue engineered tissues and organs. Natural and synthetic Biomaterials, types, characteristics, advantages and disadvantages in use for manufacture of different types of tissues. Biocompatibility. 3D scafolds. Protein adsorption, immune response, and sterilization. Polymer synthesis, characterization, mechanical testing, surface modification and biocompatibility issues, e. g. Interaction of nanostructured materials with living organisms from the point of view of biotoxicity and mutation. Tissue engineering in clinical practice. 3D printing in tissue engineering, perspectives in restoration and repair of tissue defects. Future of tissue engineering, bioreactors, bioprinters, gene engineering. Advances in Nano-Oncology with focus on prevention, screening and early detection. Theranostic nanoparticles, which combine both therapeutic and diagnostic capabilities in one dose. Oncology related nanoscaled imaging, including fluorophores and quantum dots labeling and functionalization. Image analysis, imaging facilitating surgical approaches. Nanotechnology for Biomedical Applications. Nano-bio interactions and nano-bio interfaces.
	(Dr. T. Braniste)	 Nano-bio interactions and nano-bio interfaces. Nanomaterials for Regenerative Medicine.
	20 hrs	 Smart nano coatings for improving biocompatibility in
		implantable materials.
		5. NanoPharmaceuticals and Drug Delivery Nanotechnology.

Advanced Training Course

Module	Courses	Course description		
	Nanotechnology for Detection, Diagnostics, Therapeutics and Monitoring (Dr. I. Pocaznoi)	1.	Diagnostic techniques using nanoparticles / nanotubes to detect cancer cells in the blood stream under laboratory conditions.	
	10 hrs	2. 3.	Treatment techniques in development involving nanorobots programmed for cellular repair. Antibacterial and wound treatments, using gold particles and	
		4.	irradiation. Nano-matrices for advanced diagnosis and therapy, invasive therapy nanotechnologies.	
		5. 6.	New aspects of the use of imaging based on nanotechnology. Advanced technologies of nano-bio-sensors, implantable nanosensors,	
Bioinstrumentation The goal of bioinstrumentation module is	Bioinstrumentation 1 (PhD V. Cobzac)	1.	Principles of instrumentation and measurements used in blood analysis.	
to initiate students into principles of instrumentation and measurements used	12 hrs	2.	Antibody based tests techniques Part I: Introduction. Polyclonal and monoclonal antibodies. ELISA.	
in medical analysis. 24 hours		3.	Antibody based tests techniques Part II Part II: Western Blotting. Immunofluorescence and Immunohistochemistry.	
	Bioinstrumentation 2	1.	Bioinstrumentation. Physical and chemical biosensors.	
	(PhD O. Ignatov) 12 hrs	2. 3.	Types of biomedical instruments. Bioinstrumentation in Physiotherapy.	